首页> 外文OA文献 >Hybrid Ant Colony Optimization in solving Multi-Skill Resource-Constrained Project Scheduling Problem
【2h】

Hybrid Ant Colony Optimization in solving Multi-Skill Resource-Constrained Project Scheduling Problem

机译:混合蚁群算法求解多技能   资源受限项目调度问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper Hybrid Ant Colony Optimization (HAntCO) approach in solvingMulti--Skill Resource Constrained Project Scheduling Problem (MS--RCPSP) hasbeen presented. We have proposed hybrid approach that links classical heuristicpriority rules for project scheduling with Ant Colony Optimization (ACO).Furthermore, a novel approach for updating pheromone value has been proposed,based on both the best and worst solutions stored by ants. The objective ofthis paper is to research the usability and robustness of ACO and its hybridswith priority rules in solving MS--RCPSP. Experiments have been performed usingartificially created dataset instances, based on real--world ones. We publishedthose instances that can be used as a benchmark. Presented results show thatACO--based hybrid method is an efficient approach. More directed search processby hybrids makes this approach more stable and provides mostly better resultsthan classical ACO.
机译:本文提出了混合蚁群优化(HAntCO)方法来解决多技能资源受限项目调度问题(MS--RCPSP)。我们提出了一种混合方法,该方法将经典的启发式优先级规则与项目调度相结合,并结合了蚁群算法(ACO)。此外,基于蚂蚁存储的最佳和最差解,提出了一种更新信息素值的新方法。本文的目的是研究具有优先级规则的ACO及其混合算法在解决MS--RCPSP方面的可用性和鲁棒性。实验是基于真实世界的实例,使用人工创建的数据集实例进行的。我们发布了可以用作基准的那些实例。提出的结果表明基于ACO的混合方法是一种有效的方法。混合使用更直接的搜索过程可以使这种方法更加稳定,并且比传统的ACO可以提供更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号